martes, 3 de noviembre de 2009

REACTORES DE AGUA LIGERA Y PESADA

En el reactor de agua a presión, el refrigerante es agua a una presión de unas 150 atmósferas. El agua se bombea a través del núcleo del reactor, donde se calienta hasta unos 325 °C. El agua sobrecalentada se bombea a su vez hasta un generador de vapor, donde a través de intercambiadores de calor calienta un circuito secundario de agua, que se convierte en vapor. Este vapor propulsa uno o más generadores de turbinas que producen energía eléctrica, se condensa, y es bombeado de nuevo al generador de vapor. El circuito secundario está aislado del agua del núcleo del reactor, por lo que no es radiactivo. Para condensar el vapor se emplea un tercer circuito de agua, procedente de un lago, un río o una torre de refrigeración.




En el reactor de agua en ebullición el agua de refrigeración se mantiene a una presión algo menor, por lo que hierve dentro del núcleo. El vapor producido en la vasija presurizada del reactor se dirige directamente al generador de turbinas, se condensa y se bombea de vuelta al reactor. Aunque el vapor es radiactivo, no existe un intercambiador de calor entre el reactor y la turbina, con el fin de aumentar la eficiencia.

FUSIÓN NUCLEAR

En 1934, un joven físico italiano, Enrico Fermi, bombardeo uranio con neutrones. Había conseguido retardarlos haciéndolos pasar a través de parafina. Ya antes había descubierto que esos neutrones lentos tienen mayor posibilidad de chocar y reaccionar con los núcleos que los neutrones de alta velocidad.. Tomemos en cuenta que no hay barrera repulsiva para el acercamiento de neutrones a un núcleo. Por tanto, no se requiere un mínimo de energía cinética para el bombardeo de neutrones.
Las propiedades radioactivas de los productos de bombardeo a partir del uranio llevaron a Fermi a concluir, incorrectamente, que había creado un nuevo elemento (Z=93), y fijo su atención en otros problemas de investigación. En resumen la fisión nuclear consiste en la división de un núcleo atómico en dos fragmentos de tamaño similar.


DESINTEGRACION DEL ALUMUNIO

la desintegración se realiza sin que la partícula alma quede ligada definitivamente; en (2) se efectúa la captura de la partícula alfa y queda suelto un protón. En estas ecuaciones, los índices superiores representan las masas nucleares; y los inferiores, las cargas nucleares de las distintas partículas; además, la suma de los índices superiores y la de los índices inferiores de cada miembro de estas ecuaciones han de ser iguales.






La desintegración del aluminio también se verifica con producción de protones:I7A1+ZHe _> 30Si+lHEl neutrón se produce bombardeando con partículas a el berilio: 49Be+ZHe --> I2C+In Estas transmutaciones, originadas por partículas a, producen núcleos estables; sin embargo, la mayoría de los elementos dan isótopos inestables al ser bombardeados por neutrones que han sido retardados, mediante su paso a través de agua o de parafina. La Química nuclear está estrechamente relacionada con la Física nuclear, pero con métodos y problemas propios.

TRANSFORMACIONES NUCLEARES

Las transformaciones nucleares se pueden producir de una manera espontánea, mediante emisión de radiaciones a o /3, verificándose un desplazamiento de dos lugares hacia la izquierda en el sistema periódico en el primer caso (emisión a), y de uno a la derecha en el segundo (emisión a), según la ley de corrimiento de Frederick Soddy. La captura por el núcleo de un electrón de las capas electrónicas K, L, M..., da lugar a la conversión de un protón en neutrón, lo que significa también un desplazamiento hacia la izquierda en el sistema periódico. La más frecuente es la captura K, proceso inverso a la creación K o incorporación de una partícula /3 a la K inmediata al núcleo. En un sentido amplio, a la Química nuclear le corresponde el estudio de las transformaciones radiactivas espontáneas, radioelementos naturales, elementos transuránicos, y efectos y separaciones isotópicos. También incluye el estudio de una serie de notables aplicaciones geoquímicas, geológicas y astrofísicas, acciones químicas de las radiaciones ionizantes, efectos biológicos de las radiaciones, fenómenos de fluorescencia y coloración inducidos, indicadores radiactivos, cambios isotópicos, así como aplicaciones analíticas, electroquímicas, bioquímicas y fisiológicas, técnicas e industriales, etc. Es de gran interés un aspecto de la Química nuclear que se refiere al estudio de las reacciones en que se producen elementos nuevos. Así, de la colisión de una partícula alfa (a) con un núcleo de nitrógeno, hay la posibilidad de dos procesos que dejan libre un protón


DEFINICION QUIMICA NUCLEAR


Es la que se ocupa del estudio de las transmutaciones y transformaciones de los núcleos atómicos, del mismo modo que la Química molecular atiende al estudio de las moléculas.